
Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain

Thomas Gabor,
Andreas Sedlmeier,
Marie Kiermeier,
Thomy Phan
LMU Munich

thomas.gabor@ifi.lmu.de

Marcel Henrich,
Monika Pichlmair
University of Augsburg

Bernhard Kempter,
Cornel Klein,
Horst Sauer,

Reiner Schmid,
Jan Wieghardt

Siemens AG

ABSTRACT
Adversarial learning has been established as a successful paradigm
in reinforcement learning. We propose a hybrid adversarial learner
where a reinforcement learning agent tries to solve a problem while
an evolutionary algorithm tries to find problem instances that are
hard to solve for the current expertise of the agent, causing the intel-
ligent agent to co-evolve with a set of test instances or scenarios. We
apply this setup, called scenario co-evolution, to a simulated smart
factory problem that combines task scheduling with navigation of
a grid world. We show that the so trained agent outperforms con-
ventional reinforcement learning. We also show that the scenarios
evolved this way can provide useful test cases for the evaluation of
any (however trained) agent.

CCS CONCEPTS
•Computingmethodologies→Adversarial learning;Neural
networks; Genetic algorithms; Generative and developmen-
tal approaches; Robotic planning; Instance-based learning; Mobile
agents;

KEYWORDS
coevolution, reinforcement learning, evolutionary algorithms, au-
tomatic test generation, adversarial learning

ACM Reference Format:
Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier, Thomy Phan, Marcel
Henrich, Monika Pichlmair, and Bernhard Kempter, Cornel Klein, Horst
Sauer, Reiner Schmid, Jan Wieghardt. 2019. Scenario Co-Evolution for
Reinforcement Learning on a Grid World Smart Factory Domain. In Ge-
netic and Evolutionary Computation Conference (GECCO ’19), July 13–17,
2019, Prague, Czech Republic. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3321707.3321831

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321831

1 INTRODUCTION
Reinforcement learning has been at the heart of most recent success
stories in artificial intelligence [3, 24, 31, 45]. Naturally, many exten-
sions of the basic concept have been proposed [23, 25, 28]. In this
paper, we take a look at adversarial learning: Instead of one single
agent, in adversarial learning, we train two agents with largely
opposing goals [39]. Thus, while one agent tries to maximize the
given reward function, the other agent is allowed to disturb the
environment to a certain extent and thus work against the plan
of the first agent. For instance, Pinto et al. [39] train an agent for
the purpose of walking the maximal distance without falling down,
given a virtual body set up in a particular way. At certain intervals
in between that training process, they train another agent that has
the goal to apply disturbances to the virtual environment (and in
extent to the body controlled by the first agent) in such a way as to
minimize the distance walked by the first agent. When set up right,
this increases the difficulty for the first agent (without making the
task impossible) but also the learning progress and eventually helps
in training a better agent. This example can be seen as the standard
instance of adversarial learning. Pinto et al. [39] have shown that an
agent trained in this way is not only able to walk longer distances
in the presence of disturbances (as they were present during its
training) but also is a better agent for walking even when there are
no disturbances at all. In a similar setting, Florensa et al. [16] have
shown that starting with simple challenges and then increasing the
difficulty can lead to better overall success during training.

A similar concept has been observed in biology and transferred
to evolutionary algorithms: The phenomenon of two evolutionary
processes influencing each other’s fitness evaluations is called co-
evolution. In biology, common observations include the flowers
of pollinating plants and the beaks and mandibles of birds and
insects that feed on their nectar. In this case, the involved species of
plant and bird both benefit from a common and matching solution.
However, there are also examples of competitive co-evolution: Prey
and predator constantly adapt to each other’s changes in away quite
similar to the scenario of the walking agents described above [37]:
While the prey tries to maximize its chance of getting away or
self-defend, the predator tries to impede that exact objective. When
set up right, competitive co-evolution results in an arms race where
both antagonistic populations try to outperform the other, possibly
resulting in rapid progress and increased genetic robustness [8].

This concept has been used in the most recently released work
of Wang et al. [50], who co-evolve a set of walking agents and a
set of challenging environments. For both, they use evolutionary

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

strategies, which are related to some techniques of reinforcement
learning [54] but are now rather seen as a method of gradient-
based black-box optimization in contrast to classical reinforcement
learning [43, 53]. In their approach, called POET (which stands for
Paired Open-Ended Trailblazer), they pair up instances of agents
and environments to form single individuals in an overarching
evolutionary process. By contrast, we suggest (among other dif-
ferences, cf. Section 3) a simpler interaction model for agents and
environments and train a reinforcement learning agent using stan-
dard back-propagation. Still, we are able to produce similar results
for the discrete smart factory domain we introduce in this paper.

In all three examples introduced so far, the antagonistic agents
or species only interact via the mutually shared results of fitness
evaluations: A good result for one side is bad for the the other. (We
will formalize this setup in Section 4.) This allows us to combine
various techniques here, i.e., we propose to use a reinforcement
learning agent to train for certain behavior (that is well encoded
using neural networks) and an evolutionary algorithm to evolve
challenging environments to operate in (that are easily encoded us-
ing discrete vectors without an obvious gradient to them). Thus, we
can use adequate data structures on both sides of the co-evolution.
Motivated by the industry origin of the domain, we evaluate our
results not only against the fitness score, but also against a cri-
terium of solved/failed instances, showing greater robustness for
the co-evolutionary approach.

We consider this approach an instance of the general architec-
tural model we described in [22], hence we also call it scenario co-
evolution. There, the co-evolutionary principle is applied to software
engineering, where productive code and software tests co-evolve:
A test is good when it finds bad behavior in the productive code,
while productive code is good when no test finds bad behavior. As
suggested in both [50] and [22], we show in this paper that the
co-evolved environments (also called scenarios) can be used effi-
ciently for classical software testing, outperforming random testing
in their prowess to challenge an agent.

We now continue to formally introduce the basic concepts men-
tioned so far (cf. Section 2) and then give an overview of related
work (cf. Section 3). We formally describe our approach at scenario
co-evolution in Section 4 and provide an empirical evaluation in
Section 5. We conclude with Section 6.

2 BASICS
2.1 Markov Decision Processes
We base our problem formulation on the notion of a Markov de-
cision process (MDP) [41], which is given via the tuple: M =

⟨S,A,P,R⟩. S is a (finite) set of states; st ∈ S is the state of
the MDP at time step t . A is the (finite) set of actions; at ∈ A
is the action the MDP takes at time step t . P(st+1 |st ,at) is the
transition probability function; a state transition occurs by exe-
cuting an action at in a state st . The resulting next state st+1 is
then determined according to P. Note that in this paper we focus
on a deterministic domain represented by a deterministic MDP,
so P(st+1 |st ,at) ∈ {0, 1}. Finally, R(st ,at) is the reward awarded
when the MDP takes action at when in state st ; for this paper we
assume that R(st ,at) ∈ R.

The goal is to find a policy π : S → A in the space of all possible
policies Π, which maximizes the (discounted) returnGt at state st
over a potentially infinite horizon, given via

Gt =

∞∑
k=0

γk · R(st+k ,at+k) (1)

where γ ∈ [0, 1] is the discount factor.

2.2 Reinforcement Learning
In order to search the policy space Π, we consider model-free re-
inforcement learning (RL), in which an agent interacts with an
environment given as an MDP M by executing a sequence of
actions at ∈ A, t = 0, 1, ... [48]. In the fully observable case of
reinforcement learning, the agent knows its current state st and
the action space A, but not the effect of executing at in st , i.e.,
P(st+1 |st ,at) and R(st ,at). In order to find the optimal policy π∗
a commonly used value-based approach is Q-Learning [51], named
for the action-value function Qπ : S × A → R,π ∈ Π, which
describes the expected accumulated rewardQπ (st ,at)when taking
action at when in state st and then following the policy π for all
states st+1, st+2, ... afterwards.

The optimal action-value function Q∗ is any action-value func-
tion that yields higher accumulated rewards than all other action-
value functions, i.e., Q∗(st ,at) ≥ Qπ (st ,at) ∀π ∈ Π. Q-Learning
aims to approximate Q∗ by starting from an initial guess for Q ,
which is then updated via

Q(st ,at) ← Q(st ,at) + α[rt + γ max
a

Q(st+1,a) −Q(st ,at)] (2)

by making use of experience samples et = (st ,at , st+1, rt), where
rt is the reward earned at time step t , i.e., by executing action at
when in state st . The learning rate α is a usually setup-specific
parameter.

The learned action-value function Q converges to the optimal
action-value function Q∗, which then implies an optimal policy
π∗(st) = argmaxa Q(st ,a).

It is common to use a parameterized function approximator
(like a neural network), to approximate the action-value function:
Q(st ,at ;θ) ≈ Q∗(st ,at) with θ specifying the weights of the neural
network. When a deep neural network is used as the function
approximator, this approach is called deep reinforcement learning.
Mnih et al. [31] showed that combining this approach with deep
convolutional networks allows for successful learning from high-
dimensional input features like raw image data.

2.3 Evolutionary Algorithms
For this paper, we assume an evolutionary process (EP) to be defined
as follows: Given a fitness function f : X → R for an arbitrary
set X called the search space, we want to find an individual x ∈ X
with the best fitness, i.e., f (x) ≤ f (x ′) ∀x ′ ∈ X. Note that for
consistency with the later application, we assume that the best
fitness has the lowest values, i.e., that we try to minimize the fitness
values. Usually, the search space X is too large or too complicated
to guarantee that we can find the exact best individual(s) using
standard computing models (and physically realistic time). Thus,
we take discrete subsets of the search space X via sampling and
iteratively improve their fitness. An evolutionary process E over

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

д generations, д ∈ N, is defined as E = ⟨X,o, f , (Xi)i<д⟩. X is the
search space. o : P(X) → P(X) is the evolutionary step function so
thatXi+1 = o(Xi) ∀i ≥ 0. As defined above, f : X → R is the fitness
function. (Xi)i<д is a series of populations so that Xi ⊆ X ∀i .

For this work, we use the following evolutionary operators:
• The recombination operator rec : X × X → X generates a
new individual from two given individuals.
• The mutation operator mut : X → X alters a given individ-
ual slightly to return a new one.
• The migration operator mig : X, also called hyper-mutation,
generates a random individual mig() ∈ X.
• The selection operator sel : P(X) × N → P(X) returns a
new population X ′ = sel(X ,n) given a population X ⊆ X,
so that |X ′ | ≤ n.

The operators rec,mut,mig can be applied to a population X
by choosing individuals from X to fill their parameters (if any)
according to some selection scheme σ and adding their return to
the population. For example, we allow to write mutσ (X) = X ∪
{mut(σ (X))}.

For any evolutionary process E = ⟨X,o, f , (Xi)i<д⟩ and selec-
tion schemes σ1,σ2,σ3 we assume that

Xi+1 = o(Xi) = sel(migσ3 (mutσ2 (recσ1 (Xi))), |Xi |). (3)

Roughly, we assume that an evolutionary process fulfills its
purpose if the best fitness of the population tends to better over
time, i.e., minx ∈Xi f (x) ≥ minx ∈Xi+k f (x) for sufficiently large k .

3 RELATEDWORK
3.1 Adversarial Learning
Adversarial Learning is a powerful paradigm towards robust rein-
forcement learning and has been widely used to train agents on
zero-sum games and continuous tasks [3, 5, 39, 44–46, 49].

Self-play reinforcement learning is a popular way to train agents
on complex zero-sum games like checkers, backgammon, or Go by
training a single agent on data generated by playing games against
itself [3, 39, 44–46, 49]. Since the agent always plays against itself,
the opponent always has an adequate difficulty level for the agent
to improve steadily. This can lead to complex behavioral strategies
emerging from simple game rules. Self-play reinforcement learning
can be regarded as the most simple way of adversarial learning,
where only the self-playing agent adapts, while the environment
remains static.

As mentioned in Section 1, agents can also be trained on single-
agent problems by evolving the environment adversarially like
via adding noise, disturbances, or extra forces to ensure robust
behavior [39]. The adversarial environment itself can be modeled
by a reinforcement learning agent, which tries to minimize the
outcome of the actual agent to be trained. This model results in a
zero-sum game between the original agent and the environment
itself [39]. Another way is to provide adversarial input samples
to fool the reinforcement learning agent into making suboptimal
decisions [38].

Beyond pure reinforcement learning, co-evolution has also been
used in many systems based on neuro-evolution, i.e., finding the
right weights for neural networks using some kind of evolution-
ary process [32, 36]. Paired Open-Ended Trailblazer (POET) uses

a regularized variant of co-evolution, which maintains a pool of
environment-agent pairs, where only environments having an ad-
equate difficulty level for the current agent pool are kept in the
population [50]. The agents are trained with evolutionary strate-
gies [43] (allowing for a distribution of computational effort across
multiple machines) and attempted to be transferred from one envi-
ronment to another to escape local optima.

3.2 Test Evolution
The environments generated by an approach like POET (described
above) can also function as basis for software testing, as we argue
in this paper. However, the generation of test cases for software
products has been a widely-researched topic on its own [2, 15].
While classical approaches incorporate and often combine domain
knowledge and random sampling [10, 34], search-based software
testing aims a stochastic process towards more difficult test cases
specifically [7, 30]. Many of those approaches, most prominently
EvoSuite [17–19], also employ evolutionary algorithms to search
through the space of possible test cases [12, 29, 42, 52].

In contrast to most state-of-the-art approaches, we consider as
a system-under-test not a classical, fixed piece of software but a
self-adaptive, learning system. Since these can change their own
behavior over time, they require a dynamic testing method as well
and are considered very hard to control for classical methods of
software testing [6, 11, 13]. Especially reinforcement learning poses
several challenges as the learning progress is usually hard to keep
track off and the resulting behavior is hidden behind intransparent
policy encodings like neural networks [1]. While techniques like
adversarial learning usually use neural networks on both sides, we
argue that a collection of test cases as can be derived from the pop-
ulation of scenarios is more transparent to human inspection than
the test encodings generated by previous approaches. This argu-
ment has already beenmade for the process of software engineering
as whole but not verified at a component level [22, 26].

Aside from generating software tests in a narrow sense, co-
evolution has also played a role in augmenting evolutionary search
towards more robust or more diverse results [4, 40]. It should be
noted that while the field of cooperative co-evolution (c.f. [33] for
a mathematical model and taxonomy) has interesting applications,
especially to learning agents [55], we focus entirely on a case of
competitive co-evolution.

4 APPROACH
We propose to combine an agent using reinforcement learning
with an evolutionary process evolving hard test cases. Assume
we have a family of MDPsMx = (S,A,Px ,Rx) for an arbitrary
parameter x ∈ X, with X being an arbitrary parameter space to
the MDP. A specific setting for x is also called a scenario. We limit
the difference between two differently parametrized MDPs to the
transition probability function and the reward function with the
state and action space remaining constant. Note that changing the
transition probability function may render some areas of the state
space unreachable.

Typically, when we want our agent to perform well against any
instance of the familyMx , we need to provide it with experience
samples et = (st ,at , st+1, rt) that were generated for all (or as many

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

as possible) different scenarios x ∈ X. Note that the setting of x
directly affects the values of st+1 via Px and rt via Rx . Usually,
some effect of a specific setting of x may also be visible in st and
thus exposed to the agent. This is the case for the smart factory
domain we introduce later.

The acknowledgement of certain non-user-controllable parame-
ters within the environment is crucial to realistic applications. In
most cases we have but a rough model of how the environment
may behave but no way to pinpoint the specifics unless we try out
all possibilities. So the agent needs to be trained against all of them,
ideally. Of course, for sufficiently large or complex X this becomes
infeasible. A standard approach is to take random samples from
X instead. This causes the agent to specialize on the average sce-
nario x ∈ X after a while of training, which may be a good choice
per se. However, in most real-world scenarios, good average case
performance is largely outweighed by bad worst case performance,
i.e., a navigation software that (even rarely) provokes incidents is
bad for the job, even if on average it finds the way quicker than its
competition.

So instead of taking random samples from the scenario space X,
we may want to focus on the hard settings for x , i.e., those values
x for which the agent’s performance deteriorates. In order to do
so, we have to find the respective values for x first, though. We
propose to do so using an evolutionary algorithm (as described in
Section 2.3) that optimizes for hard settings for x . This evolutionary
algorithm constructs an evolutionary process with search space X
(rendering our variable naming scheme consistent). The resulting
population after a few generations of optimizing for hard x is then
used to generate experience samples for the reinforcement learning
agent. The best reinforcement learning agent so far is in turn used
to evaluate the hardness of the settings for x for the next few
generations of evolution.

Figure 1 shows a schematic representation of the combined pro-
cess called scenario co-evolution (SCoE): The interaction points be-
tween the evolutionary process and the reinforcement learning
agent are:
• The experience samples necessary to train the agent are
drawn using settings for x ∈ X that are included in the
current population X of the evolutionary process. When all
x ∈ X have been used, the evolutionary process evolves
further for a few generations.
• The fitness f (x) assigned to each x ∈ X is computed using
the accumulated reward of running the current agent policy
π on the MDPMx , i.e.,

f (x) =
h∑
t=0
Rx (st ,π (st)) (4)

where h is the end of the current episode, i.e., Px (s |sh ,a) =
0 ∀s ∈ S,a ∈ A. Note that we defined the reinforcement
learning agent to maximize its reward while the evolutionary
process tries to minimize the fitness.

These interactions suffice to give rise to competitive co-evolution
between a supposedly robust agent and a set of hard scenarios.
However, our evaluation shows that the so-trained reinforcement
learning agent not only performs better in the hard scenarios it
was trained for, but also in randomly selected average scenarios.

We call this the “exam effect”: When we confront the agent with
hard scenarios (and it can solve those), we can also assume it can
solve easy scenarios. Thus, there is no additional use to confront
it with easy scenarios during training. Effectively, this is why we
can talk about “easy” and “hard” scenarios in the first place: The
agent does not simply specialize on a specific subset of scenarios
and gets worse on other scenarios in return, but it gets better in all
scenarios by training on some scenarios we thus call “hard”. This
implies a hierarchy or order among scenarios. The scenarios that
can be learned alongside training on hard scenarios can then be
called “easy”.

5 EVALUATION
5.1 Smart Factory Domain
For the evaluation of our approach, we implemented a smart fac-
tory domain, in which a number of items have to be processed
at workstations of different types, while avoiding collisions with
dynamically placed obstacles. Thus, the main focus of the task lies
in navigation through the smart factory. However, at certain times
the agent also needs to decide which workstation to visit next.

The environment is implemented as a discrete grid of size 7×8 as
can be seen in Figure 2. Five workstations of three different types are
placed at fixed positions. Five items are placed at these workstations
that need to be processed at various other workstations according
to an item-specific, fixed sequence of length 1 – 3. While the agent
always starts each episode at the fixed position (1, 1), 4 obstacles
are placed at varying positions on the grid. The positions of these
obstacles are the only free variables in the environment and are
either determined randomly, or according to the SCoE method’s
evolution, i.e., the SCoE approach optimizes for the most impeding
position of obstacles to the agent, X ⊂ ({0, ..., 6} × {0, ..., 7})4.
However, note that we check for unsolvable instances (when a
single workstation is completely blocked, e.g.) and exclude these
from both random sampling and evolution.

For the purpose of passing the factory state as an input to the
reinforcement learning agent (and in extent its neural network), the
factory state is encoded as a stack of 7×8 feature planes, where each
plane represents the spatial positions of workstations or the agent
w.r.t. to some attribute. See Figure 3 for an informal description of
these feature planes.

At each timestep t , the agent can execute a single action at from
the action space A: move north, south, west, east, pick-up, place.
Valid movements, i.e., movements onto free grid fields cause a re-
ward of −1, while collisions with the grid boundary or an obstacle
keep the agent’s position unchanged and are punished with a re-
ward of −100. A valid pick-up action can only be executed if the
agent is not already carrying an item and is standing on a field
adjacent to a workstation where an item is available. If the agent
is carrying an item, it can execute a valid place action if it is posi-
tioned on a field adjacent to a workstation with a type matching
the item’s next step in the processing sequence. A place action at
any other state is considered invalid. The current implementation
contains no stochasticity, i.e., the state transitions and rewards are
deterministic. A valid pick-up or place action is rewarded with 100,
while the reward of an invalid one is −50. An episode is completed
if all items were processed correctly.

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Test

Agent

Random
Generator

Agent

reinforce

update

reinforce

update
Agent

evolve

Test

Agent
update

reinforce
reinforce

Figure 1: Schematic representation of a SCoE process. A population of test scenarios is first generated at random and then
improved via evolution. Between evolutions, the test scenario population is fully utilized as training data for the reinforcement
learning agent, which causes the agent to improve in parallel to the test scenario population.

Figure 2: Visualization of the smart factory domain. A mo-
bile robot can travel north, east, south and west on the grid.
It needs to visit workstations in order to retrieve items and
then needs to visit other workstations in order to process
these items. Attempting to walk out of the grid, into a work-
station or into an obstacle is penalized. Obstacle positions
vary according to the setting of the scenario x .

5.2 Setup
A neural network is used as the function approximator for Q∗; it is
composed of 3 convolutional layers with 64 neurons each, a kernel
size of 3 and a stride length of 1, followed by a dense layer with
128 neurons and a dense output layer with 6 neurons, matching the
size of the action space A. All neurons use ReLU nonlinearity [35]
as the activation function, while Adam [27] is used to minimize
the mean squared error loss. In order to discover new actions to

take, the agent uses ϵ-greedy exploration, starting with ϵ = 1 and
exponentially decaying to ϵ = 0.1 after 40000 actions. We use the
learning rate α = 0.01 and the discount factor γ = 0.95.

Scenarios encode the position of the 4 obstacles in the domain,
so X = ({0, ..., 6} × {0, ..., 7})4 \ Y where Y are unsolvable
or non-sensical setups (placing obstacles directly on workstations,
encapsulating workstations or the agent and so on). While the state-
of-the-art agent (called “random” in the plots) selects its scenarios
to use for training episodes using random sampling, the SCoE agent
draws them from an evolutionary process with population size 500.
As SCoE uses all individuals for training exactly once, the evolution
has to be continued every 500 episodes. When evolution resumes,
it runs for another 500 generations. The SCoE evolutionary process
simply selects the best 500 individuals from parents and children
combined as survivors and uses tournaments of size 250 for parent
selection. Parents are recombined via uniform crossover on a per-
obstacle basis. Amigration (i.e., hyper-mutation) rate of 3% balances
that strong convergence. Mutation rate is 1% for amutation operator
that moves a single obstacle by one grid cell (if possible).

5.3 Training
In order to compare the overall performance of the state-of-the-art
“random” agent and a SCoE-trained agent, we first need to define
a fair evaluation function. The scores/fitnesses (see Equation 4)
returned during training cannot be compared directly, since SCoE
trains against deliberately harder scenarios and is thus expected
to return lower scores. So instead, we defined a test set of 1000
randomly generated scenarios that (most probably) neither agent
got to see during training. We evaluate the agents’ scores on these
scenarios and plot the results for a direct comparison.

Figure 4 shows the direct comparison based on the number of
episodes the respective agents where trained on. Note for this plot

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

Plane Feature Description
1 Agent position The agent’s position on the grid
2 Obstacle positions The positions of the obstacles on the grid
3 Workstation positions The positions of the workstations on the grid
4 Items for pick-up The amount of items that can be picked up at the respective positions
5 Item place positions If the agent carries an item, the positions where this item can be placed at

Figure 3: Description of all feature planes contained in the state input st for Qθ .

Figure 4: Scores achieved by SCoE and standard “random”
reinforcement learning during training over 10000 episodes.
Scores are averages of running the current agent against 1000
randomly generated test scenarios.

Figure 5: Scores achieved by a SCoE and standard “random”
reinforcement learning during training for ≈ 50000 seconds
of runtime. Scores are averages of running the current agent
against 1000 randomly generated test scenarios. The plot
shows single runs with an added trend line. Over the same
amount of training time, SCoE generally achieves slighty
higher average scores.

Figure 6: Percentage of successfully solved test scenarios by
SCoE and standard “random” reinforcement learning. The
values are calculated from a randomly generated set of 1000
scenarios.

we took a snapshot of the agent every 250 episodes, resulting in
the horizontal resolution of the plot. While we can see clearly that
SCoE outperforms the “random” agent even on randomly gener-
ated scenarios, it does have a bit of an unfair advantage: Sampling
scenarios randomly obviously takes less computational effort than
running several hundred generations of evolution to get the hardest
scenarios.

For this reason, we plotted the same data according to runtime
in Figure 5 as measured in physical seconds running on a standard
computer. The trend line still shows a net benefit of using SCoEwith
respect to the time-quality trade-off. This means that implementing
SCoE and running the elaborate evolutionary process in contrast
to just using random sampling for training scenarios actually pays
off in performance.

5.4 Test
As stated in the introduction, improving scores is of course a nice
benefit, but especially in real-world applications we are often more
interested in the agent avoiding complete failures rather than get-
ting the last bits of performance in already good scenarios. The
smart factory domain was constructed in such a way that it has a
clear overall goal: A sequence of actions is successful iff in the end
all items have been fully processed, i.e., have been transported to
all the workstations they needed to visit.

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 7: Test success achieved by SCoE for various popula-
tion sizes. Note that population size equals the batch size for
the reinforcement learning agent.

Figure 6 shows the percentage of successful tests among (again)
1000 randomly generated scenarios. These results first verify our
choice of a score/fitness function as it apparently aids in learning
successful behavior. Note that while reinforcement learning would
allow us to simply award the agent a score of +1 or −1 at the
end of each episode, depending on whether we consider it to be
solved successfully or not, this makes for a very hard reinforcement
learning problem. The discipline of constructing a score/fitness
function so that it helps to optimize for a different overall objective
but still is easy to learn is often known as reward engineering and
beyond the scope of this work [14].

On this setup, we also performed an evaluation of the evolu-
tionary parameters population size and generation size, i.e., the
amount of generations evolved each time the evolutionary process
of SCoE is resumed. Figure 7 shows the test success achieved for
various population sizes. While very small population sizes result in
considerably lower performance, the difference diminishes beyond
100 and even sizes much higher than 500 do not seem to provide
substantial benefit.

A similar picture can be seen in Figure 8 for the evaluation of
generation sizes. Note that smaller generation sizes, i.e., less gener-
ations of evolution happening between reinforcement learning, not
only hinder the optimization for hard scenarios, leading to results
quite comparable to the non-SCoE approach in Figure 6 for genera-
tions sizes of 5 and 10. Also, they cause the population of scenarios
to not change very much during evolution, which means that the
reinforcement learning agent continues to train on very similar
episodes most of the time, wasting training resources. Again, it
is interesting to note that even relatively small generation sizes
(like 25 or 50) already result in an advantage over the state-of-art
“random” approach (again cf. Figure 6).

Figure 8: Test success achieved by SCoE for various gener-
ation sizes, i.e., the amount of generations computed each
time scenarios are evolved.

Figure 9: Histogram of scores of a standard “random” re-
inforcement learning agent on 100 scenarios generated via
SCoE compared to 100 scenarios generated at random.

Lastly, wewant to verify our claim that the SCoE approach results
not only in a better-trained agent but also returns test scenarios
that can be used for the testing of any agents, i.e., scenarios that are
hard not only for the agent they were evolved against but for agents
solving the same domain in general. To this end, we took a set of the
100 hardest scenarios that came out of a SCoE-based training run
actually as a by-product and evaluated a state-of-the-art “random”
agent’s performance on these scenarios. Figure 9 shows the results
compared to the results of 100 scenarios generated randomly. As
we can see in the histogram, the “random” reinforcement learning
agent has a hard time solving the SCoE-generated scenarios, re-
sulting in comparatively many (and radically bad) negative scores.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

Note that none of the runs yielding negative scores can be consid-
ered successful w.r.t. to the above definition. This shows that the
SCoE-generated scenarios are indeed more challenging in general
and not overly specialized on the shortcomings of the single agent
they were evolved against.

6 CONCLUSION
We augmented reinforcement learning by adding a process of sce-
nario co-evolution (SCoE), a technique that uses evolution to gen-
erate hard training scenarios for the reinforcement learning agent
instead of using random sampling as it is common practice. While
it has been known that biased sampling may aid reinforcement
learning and competitive co-evolution for evolutionary processes
has been well-known and studied, the specific combination of rein-
forcement learning with a genetic algorithmwith the exact opposite
objective function is novel to the authors’ knowledge. We found
that SCoE not only aids in finding better solutions (i.e., policies)
but also aids in finding better solutions per runtime, thus bringing
a general benefit for our application. Furthermore, we tested how
our approach performs not only measured against the objective
function given to it but also against the intended goal of the sys-
tem designer before translation into an easily learnable objective
function. SCoE showed superior performance in both regards.

Finally, we tested the expressiveness of the test scenarios gen-
erated as a by-product when applying the SCoE approach. We
showed that the scenarios generated during a SCoE-based training
of a reinforcement learning agent are not necessarily specialized
on that same agent but are much harder than random scenarios
for an independently trained agent as well, thus suggesting that
SCoE’s scenarios can afterwards be used for software testing on
the domain in general.

For the evaluation of our approach we introduced and imple-
mented a small grid world domain inspired by the vision of the
smart factory. We focused on a single domain as our goal was to
show all intricacies and the variety of parameters that need to be
minded on the reinforcement learning and the evolutionary algo-
rithm side of the applications. Interestingly, the approach as well as
the results can be compared to the also very recent findings of [50]
for a co-evolutionary setting without common back-propagation-
based reinforcement learning. Naturally, we recognize that the
approach calls for a much broader evaluation on a variety of do-
mains. However, the generality of the concepts involved, i.e., both
reinforcement learning and evolutionary algorithms being known
for their broad applicability (at least each on their own), leads us to
suspect similar results can be achieved for other domains.

We would like to point out the following limitations of our cur-
rent implementation of the SCoE approach and suggest them to be
tackled in future work:

• Domain variety: As discussed, transferability of the results
needs to be shown. While most intuitive domains lend them-
selves to parametrized versions (having free parameters for
SCoE to optimize), it is still unclear how multiple sources
of free parameters should be handled. For example, if our
smart factory domain not only had obstacles but also faulty
items, should these be optimized by separate evolutionary

processes or should we build a single process for a more
complex, combined search space?
• Stochasticity: We only showed results for a deterministic
domain. While the framework easily allows for stochasticity
and preliminary experiments have suggested to us that the
approach is robust w.r.t. to domains with non-deterministic
transition probability functions, we still require a thorough
evaluation if and how SCoE needs to adapted to stochastic
domains (which are the common case in real-world applica-
tions). The known robustness of evolutionary processes to
random effects may be exploitable for SCoE [9].
• Efficiency: At present, the SCoE approach uses independent
evaluations when computing the score for training in rein-
forcement learning and when computing the fitness func-
tions for the individual scenarios. We showed that (at least
when scenario evaluations are not all too expensive) SCoE
still manages to slightly outperform standard reinforcement
learning regarding runtime. However, we suspect that the
evaluations could be shared to some extent, further improv-
ing the performance of SCoE.
• Diversity: Usually, within a parametrized domain there exist
several different archetypes of hard scenarios. Even for our
relatively simple smart factory domain with obstacles, we
could place obstacles to block off the agent, to block off a
workstation or in the middle of an area where most pathways
cross. It may be beneficial for the evolution to represent this
diversity within each single population as well. Diversity in
evolutionary algorithms has been shown to be beneficial in
principle for many different domains [20, 47]. The presence
of a dynamic fitness function may suggest that SCoE already
favors diversity to some extent [21]. However, the exact
impact diversity has and could have on the SCoE results still
needs to be understood more explicitly.

Of course, this selection of open questions and problems is far
from complete.We also suggest that further connections to software
engineering processes and software test design as sketched in [22,
50] could be made, for example.

Our results show that the hybridization of different search meth-
ods and the deliberate construction of co-evolutionary systems can
be a promising endeavor. While these complex, intertwined systems
seem hard to control at first, we suggest that approaches like SCoE,
bringing part of the control (i.e., testing) into the system, can actu-
ally aid the transparency and manageability of traditionally “black
box” methods (like reinforcement learning). Eventually, one may
hope for a better theoretic and practical understanding of complex
systems in the future.

REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[2] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, Antonia
Bertolino, et al. 2013. An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software 86, 8 (2013),
1978–2001.

[3] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking fast and slow
with deep learning and tree search. In Advances in Neural Information Processing
Systems. 5360–5370.

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

[4] Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to automatic
software bug fixing. In Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on. IEEE, 162–168.

[5] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent Complexity via Multi-Agent Competition. In ICLR.

[6] Lenz Belzner, Michael Till Beck, Thomas Gabor, Harald Roelle, and Horst Sauer.
2016. Software engineering for distributed autonomous real-time systems. In
Proceedings of the 2nd International Workshop on Software Engineering for Smart
Cyber-Physical Systems. ACM, 54–57.

[7] Lenz Belzner and Thomas Gabor. 2017. Bayesian verification under model uncer-
tainty. In Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 2017
IEEE/ACM 3rd International Workshop on. IEEE, 10–13.

[8] Camillo Bérénos, K Mathias Wegner, and Paul Schmid-Hempel. 2010. Antagonis-
tic coevolution with parasites maintains host genetic diversity: an experimental
test. Proceedings of the Royal Society of London B: Biological Sciences (2010).

[9] Hans-Georg Beyer. 2000. Evolutionary algorithms in noisy environments: Theo-
retical issues and guidelines for practice. Computer methods in applied mechanics
and engineering 186, 2-4 (2000), 239–267.

[10] Joshua Brown, Zhi Quan Zhou, and Yang-Wai Chow. 2018. Metamorphic Testing
of Navigation Software: A Pilot Study with Google Maps. In Proceedings of the
51st Hawaii International Conference on System Sciences.

[11] Tomas Bures, DannyWeyns, Christian Berger, Stefan Biffl, Marian Daun, Thomas
Gabor, David Garlan, Ilias Gerostathopoulos, Christine Julien, Filip Krikava,
et al. 2015. Software Engineering for Smart Cyber-Physical Systems–Towards
a Research Agenda: Report on the First International Workshop on Software
Engineering for Smart CPS. ACM SIGSOFT Software Engineering Notes 40, 6
(2015), 28–32.

[12] Fulvio Corno, Ernesto Sánchez, Matteo Sonza Reorda, and Giovanni Squillero.
2004. Automatic test program generation: a case study. IEEE Design & Test of
Computers 21, 2 (2004), 102–109.

[13] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel,
et al. 2013. Software engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems II. Springer, 1–32.

[14] Daniel Dewey. 2014. Reinforcement learning and the reward engineering princi-
ple. In 2014 AAAI Spring Symposium Series.

[15] Jon Edvardsson. 1999. A survey on automatic test data generation. In Proceedings
of the 2nd Conference on Computer Science and Engineering. 21–28.

[16] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. 2017. Reverse curriculum generation for reinforcement learning. arXiv
preprint arXiv:1707.05300 (2017).

[17] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary generation of whole test
suites. In 2011 11th International Conference on Quality Software. IEEE, 31–40.

[18] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
416–419.

[19] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using EvoSuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 8.

[20] Thomas Gabor, Lenz Belzner, and Claudia Linnhoff-Popien. 2018. Inheritance-
based diversity measures for explicit convergence control in evolutionary algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 841–848.

[21] Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill Schmid. 2018. Preparing
for the Unexpected: Diversity Improves Planning Resilience in Evolutionary Al-
gorithms. In 2018 IEEE International Conference on Autonomic Computing (ICAC).
IEEE, 131–140.

[22] Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. 2018. Adapting quality as-
surance to adaptive systems: the scenario coevolution paradigm. In International
Symposium on Leveraging Applications of Formal Methods. Springer, 137–154.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[24] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. 2018. Deep reinforcement learning that matters. In Thirty-Second
AAAI Conference on Artificial Intelligence.

[25] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. 2018.
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[26] Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco
Zambonelli. 2015. The ensemble development life cycle and best practices for
collective autonomic systems. In Software Engineering for Collective Autonomic
Systems. Springer, 325–354.

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[28] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[29] Kiran Lakhotia, Mark Harman, and Phil McMinn. 2007. A multi-objective ap-
proach to search-based test data generation. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation. ACM, 1098–1105.

[30] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[32] Nick Moran and Jordan Pollack. 2018. Coevolutionary Neural Population Models.
arXiv preprint arXiv:1804.04187 (2018).

[33] Jason Morrison and Franz Oppacher. 1999. A general model of co-evolution for
genetic algorithms. In Artificial Neural Nets and Genetic Algorithms. Springer,
262–268.

[34] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[35] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[36] Geoff S Nitschke, AE Eiben, and Martijn C Schut. 2012. Evolving team behaviors
with specialization. Genetic Programming and Evolvable Machines 13, 4 (2012),
493–536.

[37] Randal S Olson, David B Knoester, and Christoph Adami. 2016. Evolution of
swarming behavior is shaped by how predators attack. Artificial life 22, 3 (2016),
299–318.

[38] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish
Chowdhary. 2018. Robust deep reinforcement learning with adversarial attacks.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems. International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2040–2042.

[39] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-
bust adversarial reinforcement learning. arXiv preprint arXiv:1703.02702 (2017).

[40] Jordan B Pollack and Alan D Blair. 1998. Co-evolution in the successful learning
of backgammon strategy. Machine learning 32, 3 (1998), 225–240.

[41] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[42] André Reichstaller, Thomas Gabor, and Alexander Knapp. 2018. Mutation-based
test suite evolution for self-organizing systems. In International Symposium on
Leveraging Applications of Formal Methods. Springer, 118–136.

[43] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[44] Arthur L Samuel. 1959. Some studies in machine learning using the game of
checkers. IBM Journal of research and development 3, 3 (1959), 210–229.

[45] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[46] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[47] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and pre-
mature convergence: A survey of methodologies for promoting diversity in
evolutionary optimization. Information Sciences 329 (2016), 782–799.

[48] Richard S Sutton and AndrewG Barto. 1998. Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge.

[49] Gerald Tesauro. 1995. Temporal difference learning and TD-Gammon. Commun.
ACM 38, 3 (1995), 58–69.

[50] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. 2019. Paired Open-
Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Di-
verse Learning Environments and Their Solutions. arXiv preprint arXiv:1901.01753
(2019).

[51] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards.
Ph.D. Dissertation. King’s College, Cambridge.

[52] JoachimWegener, Kerstin Buhr, and Hartmut Pohlheim. 2002. Automatic test data
generation for structural testing of embedded software systems by evolutionary
testing. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 1233–1240.

[53] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. 2008. Natural
evolution strategies. In IEEE World Congress on Computational Intelligence. IEEE,
3381–3387.

[54] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[55] Chern Han Yong and Risto Miikkulainen. 2001. Cooperative coevolution of
multi-agent systems. University of Texas at Austin, Austin, TX (2001).

View publication stats

